快乐,使生命得以延续。快乐,是精神和肉体的朝气,是希望和信念,是对自己的现在和来来的信心,是一切都该如此进行的信心。——果戈理
 
今天做了个小测试啊
我自己造了一百万多条(1029708条)数据
这里测试呢我们首先是编写了一个LEFT JOIN
连表SQL如下
SELECT  * FROM  `film`         LEFT  JOIN  `language ` ON  `film`.language_id =  `language `.language_id 
我们查询一百万多条后耗时为33457.8317 ms,大约30来秒,这是没有加索引的情况下
我们使用单表查询,然后再拼装
long  startTime = System.nanoTime();List<Film> films = filmMapper.selectList(Wrappers.lambdaQuery()); List<Integer> languageIds = films.parallelStream().map(Film::getLanguageId).distinct().collect(Collectors.toList()); final  Map<Integer, Language> languageMap = languageMapper.selectList(Wrappers.lambdaQuery(Language.builder().build()).in(Language::getLanguageId, languageIds)).parallelStream().collect(Collectors.toMap(Language::getLanguageId, Function.identity(), (v1, v2) -> v2));List<Map<String, Object>> collect = films.stream().map(film -> {     Map<String, Object> map = BeanUtils.beanToMap(film);     Optional.ofNullable(film).map(Film::getLanguageId).map(languageMap::get).map(BeanUtils::beanToMap).ifPresent(map::putAll);     return  map; }).collect(Collectors.toList()); long  endTime = System.nanoTime();System.out.println("耗时:"  + ((endTime - startTime) / (1000.0  * 1000.0 )) + " ms" );  
最后耗时为22289.5385 ms,大约20来秒,可以看到明显比上面的连表查询要快
那么如果再连一次呢,模拟两个LEFT JOIN的场景
SELECT  * FROM  `film`         LEFT  JOIN  `language ` ON  `film`.language_id =  `language `.language_id          LEFT  JOIN  `language ` AS  language1 ON  `film`.language_id =  language1.language_id 
这里耗时37053.9295 ms,因为我们language表数据量较小,所以再连一次差别也并不是特别大
但可以明显看出,多了4秒左右
我们写成单表的话
long  startTime = System.nanoTime();     List<Film> films = filmMapper.selectList(Wrappers.lambdaQuery());      List<Integer> languageIds = films.parallelStream().map(Film::getLanguageId).distinct().collect(Collectors.toList());      CompletableFuture<Map<Integer, Language>> languageMapFuture = CompletableFuture.supplyAsync(() -> languageMapper.selectList(Wrappers.lambdaQuery(Language.builder().build()).in(Language::getLanguageId, languageIds)).parallelStream().collect(Collectors.toMap(Language::getLanguageId, Function.identity(), (v1, v2) -> v2)));      CompletableFuture<Map<Integer, Language>> languageMapFuture1 = CompletableFuture.supplyAsync(() -> languageMapper.selectList(Wrappers.lambdaQuery(Language.builder().build()).in(Language::getLanguageId, languageIds)).parallelStream().collect(Collectors.toMap(Language::getLanguageId, Function.identity(), (v1, v2) -> v2)));      CompletableFuture.allOf(languageMapFuture, languageMapFuture1).get();      Map<Integer, Language> languageMap = languageMapFuture.get();      Map<Integer, Language> languageMap1 = languageMapFuture1.get();      List<Map<String, Object>> collect = films.stream().map(film -> {          Map<String, Object> map = BeanUtils.beanToMap(film);          Optional.ofNullable(film).map(Film::getLanguageId).map(languageMap::get).map(BeanUtils::beanToMap).ifPresent(map::putAll);          Optional.ofNullable(film).map(Film::getLanguageId).map(languageMap1::get).map(BeanUtils::beanToMap).ifPresent(map::putAll);          return  map;      }).collect(Collectors.toList());      long  endTime = System.nanoTime();      System.out.println("耗时:"  + ((endTime - startTime) / (1000.0  * 1000.0 )) + " ms" );  
执行后耗时23362.9739 ms!!发现仅仅多了一秒左右啊
上面的连表SQL,就算在language表的language_id上加了索引,也是耗时35314.184 ms
也远远没有我们的单表快
所以结论:
同样的数据,单表多次查询在正确使用下,比连表确实快不少
但连表只需要一条SQL而单表需要写一大堆代码/******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************